AI Conversational System Development
In this chapter, you will learn how to develop a Chinese celebrity AI conversational system.
đĨ Tutorial Videoâ
đ Learning Contentâ
1. Environment Preparationâ
Hugging Face Configurationâ
- Visit Hugging Face to register an account
- Generate access token:
- Visit Token Settings Page
- Click "New token"
- Select "Write" permission
- Generate token and save it
Important Note
The token is very important, please save it carefully. You will not be able to view the complete token again after closing the page.
Development Environment Configurationâ
- Required Software
- Dependency Installation
- Python 3.8+
- Git
- Cursor editor
# Create virtual environment
python -m venv venv
# Activate virtual environment
# Windows:
venv\Scripts\activate
# Linux/Mac:
source venv/bin/activate
# Install dependencies
pip install gradio huggingface_hub
2. Project Creationâ
Hugging Face Space Setupâ
- Log in to Hugging Face
- Click "New Space"
- Fill in basic information:
- Owner: Your username
- Space name: role-play-chat
- SDK: Gradio
- Hardware: CPU basic
- Visibility: Public
Local Project Configurationâ
# Clone Space repository
git clone https://huggingface.co/spaces/your-username/role-play-chat
cd role-play-chat
# Create project structure
mkdir -p {assets,utils,tests}
touch main.py character_profiles.py dialogue_system.py
3. System Architecture Designâ
4. Core Functionality Implementationâ
Dialogue Systemâ
class DialogueSystem:
def __init__(self):
self.history = []
self.current_character = None
async def process_message(self, message: str) -> str:
"""Process user message and generate response"""
if not self.current_character:
return "Please select a conversation character first"
# Add to history
self.history.append({"role": "user", "content": message})
# Generate response
response = await self._generate_response(message)
self.history.append({"role": "assistant", "content": response})
return response
def manage_context(self, max_length: int = 2048):
"""Manage dialogue context length"""
context_length = sum(len(msg["content"]) for msg in self.history)
while context_length > max_length and len(self.history) > 1:
removed = self.history.pop(0)
context_length -= len(removed["content"])
Character Systemâ
class Character:
def __init__(self, name: str, profile: dict):
self.name = name
self.background = profile.get("background", "")
self.personality = profile.get("personality", [])
self.speaking_style = profile.get("speaking_style", {})
def get_prompt(self) -> str:
"""Generate character prompt"""
return f"""
You are now playing {self.name}.
Background: {self.background}
Personality: {', '.join(self.personality)}
Speaking style: {self.speaking_style}
"""
5. Testing and Deploymentâ
Testing Specificationsâ
# tests/test_dialogue.py
import pytest
from dialogue_system import DialogueSystem
def test_dialogue_initialization():
system = DialogueSystem()
assert system.history == []
assert system.current_character is None
@pytest.mark.asyncio
async def test_message_processing():
system = DialogueSystem()
system.current_character = Character("Test Character", {})
response = await system.process_message("Hello")
assert isinstance(response, str)
assert len(system.history) == 2
Deployment Processâ
- Submit code to GitHub
- Check deployment status
- Monitor system performance
6. Best Practicesâ
Code Standardsâ
# Good naming and commenting example
class DialogueManager:
"""Dialogue manager responsible for processing user input and generating responses
Attributes:
history (List[Dict]): Dialogue history
character (Character): Currently selected character
max_history_length (int): Maximum history length
"""
def __init__(self, max_history_length: int = 100):
self.history = []
self.character = None
self.max_history_length = max_history_length
Performance Optimizationâ
from functools import lru_cache
@lru_cache(maxsize=1000)
def get_character_profile(character_id: str) -> dict:
"""Get character profile information (with caching)"""
return load_character_profile(character_id)
# Asynchronous processing
async def process_messages(messages: list) -> list:
"""Process multiple messages in parallel"""
tasks = [process_single(msg) for msg in messages]
return await asyncio.gather(*tasks)
Security Practicesâ
from pydantic import BaseModel, validator
class UserInput(BaseModel):
message: str
character_id: str = None
@validator('message')
def validate_message(cls, v):
if len(v) > 1000:
raise ValueError('Message length cannot exceed 1000 characters')
if not v.strip():
raise ValueError('Message cannot be empty')
return v.strip()
Project Features
- Support for multi-character dialogue
- Intelligent context management
- Real-time response processing
- Complete error handling mechanism
This AI conversational system project demonstrates how to build a complete AI application, covering the entire process from environment configuration to deployment and maintenance.